
Short Communication

Direct effects of doxorubicin on skeletal muscle contribute to
fatigue
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Chemotherapy-induced fatigue is a multidimensional symptom. Oxidative stress has been proposed as a working mechanism for
anthracycline-induced cardiotoxicity. In this study, doxorubicin (DOX) was tested on skeletal muscle function. Doxorubicin
induced impaired ex vivo skeletal muscle relaxation followed in time by contraction impediment, which could be explained by DOX-
induced changes in Ca2þ responses of myotubes in vitro. The Ca2þ responses in skeletal muscle, however, could not be explained by
oxidative stress.
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Fatigue, defined as sustained exhaustion and decreased functional
capacity not relieved by rest, is one of the most common side
effects of chemotherapy in cancer patients. Chemotherapy-induced
fatigue has been associated with asthenia (Morrow et al, 2002).
Cardiomyopathy is a major adverse effect in patients treated with
anthracyclines. One mechanism described, explaining the cardio-
toxicity of doxorubicin (DOX) in cardiomyopathy, is an increase in
oxidative stress due to a decrease in glutathione concentrations
(Wallace, 2007). This increase in oxidative stress subsequently
leads to a loss of mitochondrial integrity and function, eventually
leading to an increase in calcium concentrations leaking from the
mitochondria. Positive results in reducing cardiotoxicity have been
reported when antioxidants were used in combination with DOX.
However, results obtained are not completely conclusive (Singal
et al, 1997). It has been described that DOX is extruded from the
cardiac myocyte conjugated to GSH by multidrug resistance
proteins (MRPs) (Krause et al, 2007). Extensive extrusion of DOX
subsequently induces GSH depletion. This DOX-induced imbal-
ance of the redox status supposedly induces mitochondrial
permeability leading to changes in calcium fluxes as observed in
DOX-induced cardiotoxicity. In this study, the effect of DOX on
skeletal muscle was studied as well as the effect of oxidative stress
on this process.

MATERIALS AND METHODS

Contractile characteristics of the extensor digitorum longus (EDL)
from male CD2F1 mice, 7– 9 weeks old, were assessed ex vivo as
described earlier (Gorselink et al, 2006). Muscles were incubated

(0–120 min) with a DOX concentration range of 50– 175mM, being
below maximal plasma concentrations reached in clinical practice
(Delgado et al, 1989). In differentiated C2C12 myotubes (obtained
after 6 days of culturing in DMEMþ 0.4% UltroserG), calcium
responses were measured fluorescently (FURA-2 AM ester). Effect
of overnight incubation with DOX (0–10 mM), electron chain
inhibitors (rotenone 0.1– 10 mM or piericidin A 0.25–2.5 mM) and
antioxidants (N-acetyl cysteine (NAC) 10 mM – 1 mM or trolox
10 mM –1 mM) was studied.

RESULTS

Contractile characteristics of mouse EDL remained stable during
the complete incubation period: control curves at t¼ 0 and
t¼ 120 min were identical for all parameters measured (Figures
1A– C, 2A and B). None of the DOX concentrations used led to
LDH release. Reductions in maximal force, contraction or
relaxation velocity remained stable in time, if muscles were rinsed
for 2 h subsequently.

Incubation with 100 or 175 mM DOX for 1 h or more resulted in a
time- and concentration-dependent decrease of maximal forces
(Figures 1A, 2A and C). Maximal relaxation velocity was already
affected at lower concentrations (X50 mM DOX) and after a shorter
incubation period (X0.5 h) (Figures 1B and 2B). The maximal
contraction velocity (Figure 1C) decreased after a 1.5 h incubation
with 100 mM DOX (Figure 2E, first contraction). After 1 h
incubation, CT (contraction time required to increase the force
from 10 to 90% of the maximal force) was proportional to the
maximal force (Figure 1D). RT (relaxation time from 90 to 10% of
the maximal force), however, was longer, implying impaired
relaxation (Figure 1E). In the presence of DOX, at low frequencies
(40 Hz), maximal force increased during the contraction phase,
whereas in the controls, force remained constant or slightly
decreased (1F). This difference in shape of the curve seems to
disappear at higher frequencies. So, the sequence of events induced
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by the exposure of skeletal muscle to DOX starts with an
attenuated maximal relaxation velocity, followed by a decreased
maximal force and a longer relaxation time.

To estimate the effect of DOX on fatigue, a moderate exercise
protocol (83 Hz, 250 ms every 1000 ms, 100 contractions) was
performed. Stimulation after 2 h of incubation with DOX resulted
in impaired maximal force, contraction and relaxation velocity
(Figure 2C–E) at the start of the exercise protocol. These
differences remained and further increased during the repetitive
stimulations (Figure 2E and F).

These results indicate that incubations with DOX result in
concentration- and time-dependent decreases in muscle perfor-
mance both during single and repetitive contraction pulses. Again,
the sequence of events starts off with an impaired muscle relaxation
velocity. Relaxation velocity is directly related to the rate of clearance
of calcium from the cytoplasm (MacLennan, 2000; Pan et al, 2003).
C2C12 myotubes were used as an in vitro model to examine if DOX
affected Ca2þ fluxes. An overnight incubation with DOX resulted in
increased calcium responses to ATP and caffeine (Figure 3).

To test the magnitude of the effect of oxidative stress on changes
in calcium influx, oxidative stress was induced in C2C12 cells
(Table 1). Free radicals were generated by inducing malfunction of
the mitochondria through the addition of the respiratory chain
inhibitor rotenone or piericidin A. Despite the fact that these
components induced toxicity resulting in cell death at higher
concentrations, addition of none of these components resulted in
an increased calcium influx in the C2C12 cells at concentrations

not affecting cell vitality. Moreover, the addition of trolox, a water-
soluble vitamin E antioxidant, effective in both the lipid and the
water phase, did not result in a reduction of the DOX-induced
increase in calcium influx in the C2C12 cell system. In addition,
incubations with NAC did not result in the inhibition of the
increased calcium influx.

DISCUSSION

The physiological aspects of cancer-related fatigue are multi-
factorial and are both tumour and therapy related (Morrow et al,
2002). A poor nutritional status, cancer cachexia and chemother-
apy-induced fatigue have been associated with muscle weakness
and reduced quality of life (Morrow et al, 2002; Gorselink et al,
2006). This paper shows that DOX can directly impair skeletal
muscle relaxation, followed in time by defective contraction.
Doxorubicin has been described for heart muscle to interfere with
the respiratory chain (Ishikawa et al, 2006) and to inhibit oxidative
phosphorylation. This altered mitochondrial function is believed
to induce increased oxidative stress in the mitochondria (Wallace,
2007), leading to malfunction of the mitochondria. Shortage in
energy would then cause leakage of calcium from the mitochondria
into the cytoplasm. Mimicking this effect, however, with two
different respiratory chain inhibitors did not result in increased
calcium influxes in the C2C12 cell system. The addition of different
kinds of antioxidants also did not reduce the DOX-induced
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Figure 1 Effects of doxorubicin (DOX) on muscle function of mouse EDL. (A–E) Incubations were carried out for 1 h unless stated otherwise. (A)
Maximal force. (B) Maximal relaxation velocity. (C) Maximal contraction velocity. (D) CT at tetanus. (E) RT at tetanus. (F) Typical examples of contraction
curves after 120 min of incubation with 175 mM DOX. Data: mean±s.e.m. *Adjacent to curve (for complete curve): Po0.05 vs control.
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hypercalcaemia. Controversies in the results obtained for studies
testing different antioxidants in preventing cardiomyopathy have
been suggested to be caused by differences in the ability of the
antioxidants to be effective in both the lipid and the water phase
(Singal et al, 1997). Therefore, trolox, an antioxidant active in both
the water and the lipid phase, was tested. However, it did not
reduce the DOX-induced increase in calcium response. Alterna-
tively, DOX has been described to reduce GSH levels due to an
extensive extrusion of GSH-conjugated DOX by MRPs (Krause
et al, 2007). N-acetyl cysteine supplementation has been described
to be capable of restoring GSH stores (Kelly, 1998). However, the
incubation of C2C12 cells with NAC did not decrease the DOX-
induced calcium influx. Krause et al (2007) described a marked
difference in the expression of the MRP1/GS-X pump between
skeletal muscle and cardiac muscle. Although the cardiomyocytes
show an abundant expression of this pump, expression is
completely absent in skeletal muscle cells. MRP1/GS-X is one of
the two MRP proteins involved in extruding DOX conjugated with
glutathione from the cytoplasm in cardiomyocytes. RLIP76
(RALBP1), the other GS-X pump involved in the transport of
GSH-conjugated DOX out of the heart muscle, seems to be
expressed 1.5 times more in heart muscle compared with skeletal
muscle (Awasthi et al, 2008). A marked difference in the
expression of MRPs between skeletal and cardiac muscle might
be an explanation for the differences in the reaction to

antioxidants observed. Next to that, Lebrecht et al (2003) reported
that in DOX-treated rats, activities of enzymes of the respiratory
chain were decreased in cardiac muscle but not in skeletal muscle.
We therefore hypothesise that in skeletal muscle, the increased
calcium influx induced by DOX is not due to radical induced
malfunction of the mitochondria.

In (skeletal) muscle, Ca2þ can be released by the depolarisation
or by the activation of the purigenic receptor by ATP. In case of
depolarisation, the dihydropyridine receptor, a voltage-sensitive
Ca2þ channel, interacts with the ryanodine receptor (RyR) to
release Ca2þ from the sarcoplasmic reticulum (SR). Caffeine can
activate the RyR directly. If the purigenic receptor is stimulated by
ATP, IP3 is formed, which in turn releases Ca2þ from the SR.
Ca2þ -induced Ca2þ release can then reinforce RyR stimulation.
The elevated Ca2þ can be redistributed to mitochondria through
the Ca2þ uniporter or to the SR through SERCA pump. Data from
skeletal muscle SR fragments indicated that DOX could bind to
Ryr-1 resulting in Ca2þ release from the SR (Abramson et al,
1988). However, we could not detect a spontaneous DOX-induced
Ca2þ flux in the absence of a contraction-stimulating component
like ATP or caffeine. The difference between these findings might
be that the C2C12 myotubes are an intact cellular system, whereas
Abramson et al (1988) used SR fragments. Our finding that
relaxation time is especially changed in skeletal muscle suggests a
reduction in Ca2þ re-uptake in the mitochondria or SR, leading
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Figure 2 Effects of doxorubicin (DOX) on contractile function of mouse EDL. (A) Maximal force (175 mM DOX for 0–2 h). (B) Maximal relaxation
velocity (50 mM DOX for 0–2 h). (C–E) Effects of DOX on repetitive stimulation on maximal force, maximal contraction and relaxation velocity,
respectively. (F) Effect of DOX on maximal force corrected for maximal force at the start of the repetitive stimulation. Data: mean±s.e.m. *Above point or
adjacent to curve (for complete curve): Po0.05 vs control.
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initially to increased calcium responses and prolonged muscle
relaxation times. But a decrease in the velocity of Ca2þ re-uptake
leading to increased intracellular calcium levels might, however,
lead to an increase of the maximal force during the contraction
phase (MacLennan, 2000). This effect is indeed present at a lower
frequency, resulting in a different shape of the contraction curve
(Figure 1F, 40 Hz). These data are in line with the findings of De
Beer et al (1992) showing that the sensitivity of skeletal muscle to
extracellular calcium increases in DOX-treated skinned single

skeletal muscle fibres. At higher frequencies, however, maximal
force did not further rise during the contraction (Figure 1F). This
might be due to depleted Ca2þ stores due to a restrained Ca2þ re-
uptake in the SR. This aligns with data showing that DOX-induced
cardiac dysfunction is associated with a lack rather than an excess
of calcium (Jensen, 1986) and with SERCA-1 knockouts showing a
depressed maximal force output (Pan et al, 2003). A prolonged
exposure to DOX might lead to an increased apoptosis due to the
initial Ca2þ overload, whereas the surviving skeletal muscle cells
might suffer from emptied Ca2þ stores due to a continuous
reduction of Ca2þ re-uptake. The DOX-induced, oxidative stress-
independent changes in skeletal muscle function might also be
present in cardiac muscle, but overlooked because of the presence
of oxidative stress-induced side effects. Anthracyclines are widely
used to treat solid tumours and haematological malignancies
(Hortobagyi, 1997). Patients suffering from these types of cancers
are also at risk of developing hypercalcaemia (Higdon and Higdon,
2006). Therefore, this patient group might even be more
susceptible to sustained exhaustion as a result of impaired muscle
function due to chemotherapy-induced subcellular calcaemic
disturbances.
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Table 1 The effect of antioxidants and respiratory chain inhibitors on
calcium influx in C2C12 cells

Calcium influx in C2C12 cells Mean±s.e.m. P-value

Addition of antioxidants

10 mM doxorubicin 1.97±0.14
10 mM doxorubicin+1 mM trolox 2.40±0.45 0.2
10 mM doxorubicin+0.5 mM trolox 2.11±0.14 0.5
10 mM doxorubicin+0.1 mM trolox 2.43±0.11 0.2
10 mM doxorubicin+10 mM trolox 2.13±0.44 0.6
10 mM doxorubicin+1 mM N-acetyl cysteine 1.95±0.18 1.0
10 mM doxorubicin+0.1 mM N-acetyl cysteine 2.10±0.10 0.7
10 mM doxorubicin+10 mM N-acetyl cysteine 1.84±0.36 0.7

Addition of respiratory chain inhibitors Mean±s.e.m. P-value

10 mM rotenone 0.81±0.15 0.001
0.1 mM rotenone 0.69±0.08 0.000
25 mM piericidin A 0.92±0.23 0.001
2.5 mM piericidin A 0.74±0.03 0.000
0.25 mM piericidin A 0.91±0.10 0.001

Data are expressed relative to control values without doxorubicin (DOX). P-values
are expressed as compared with values with 10 mM DOX present. None of the
antioxidants added resulted in a significant decrease in DOX-induced calcium influx
(no significant difference with DOX alone). None of the respiratory chain inhibitors
resulted in an increase in calcium influx (all values below 1). Therefore, all the values
were significantly different from incubations with 10 mM DOX.

*

*

*

*

0

5

10

15

20

25

30

35

40

C
al

ci
um

 in
flu

x 
 (

F
U

R
A

-p
ro

be
s,

 
ar

ea
 u

nd
er

 th
e 

cu
rv

e)
  

Control +1 �M DOX + 10 �M DOX

+ Caffeine+ ATP
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